Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans.

نویسندگان

  • Marcas M Bamman
  • John K Petrella
  • Jeong-su Kim
  • David L Mayhew
  • James M Cross
چکیده

We applied K-means cluster analysis to test the hypothesis that muscle-specific factors known to modulate protein synthesis and satellite cell activity would be differentially expressed during progressive resistance training (PRT, 16 wk) in 66 human subjects experiencing extreme, modest, and failed myofiber hypertrophy. Muscle mRNA expression of IGF-I isoform Ea (IGF-IEa), mechanogrowth factor (MGF, IGF-IEc), myogenin, and MyoD were assessed in muscle biopsies collected at baseline (T1) and 24 h after the first (T2) and last (T3) loading bouts from previously untrained subjects clustered as extreme responders (Xtr, n=17), modest responders (Mod, n=32), and nonresponders (Non, n=17) based on mean myofiber hypertrophy. Myofiber growth averaged 2,475 microm2 in Xtr, 1,111 microm2 in Mod, and -16 microm2 in Non. Main training effects revealed increases in all transcripts (46-83%, P<0.005). For the entire cohort, IGF-IEa, MGF, and myogenin mRNAs were upregulated by T2 (P<0.05), while MyoD did not increase significantly until T3 (P<0.001). Within clusters, MGF and myogenin upregulation was robust in Xtr (126% and 65%) and Mod (73% and 41%) vs. no changes in Non. While significant in all clusters by T3, IGF-IEa increased most in Xtr (105%) and least in Non (44%). Although MyoD expression increased overall, no changes within clusters were detected. We reveal for the first time that MGF and myogenin transcripts are differentially expressed in subjects experiencing varying degrees of PRT-mediated myofiber hypertrophy. The data strongly suggest the load-mediated induction of these genes may initiate important actions necessary to promote myofiber growth during PRT, while the role of MyoD is less clear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis.

A present debate in muscle biology is whether myonuclear addition is required during skeletal muscle hypertrophy. We utilized K-means cluster analysis to classify 66 humans after 16 wk of knee extensor resistance training as extreme (Xtr, n = 17), modest (Mod, n = 32), or nonresponders (Non, n = 17) based on myofiber hypertrophy, which averaged 58, 28, and 0%, respectively (Bamman MM, Petrella ...

متن کامل

Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis.

Myostatin is a potent inhibitor of myogenesis; thus differential expression might be expected across individuals varying in responsiveness to myogenic stimuli. We hypothesized that myostatin would be differentially regulated across humans with markedly different hypertrophic responses to resistance training (RT; 16 wk). Targets were assessed in muscle biopsies at baseline (T1) and 24 h after th...

متن کامل

Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice.

The avian skeletal alpha-actin gene was used as a template for construction of a myogenic expression vector that was utilized to direct expression of a human IGF-I cDNA in cultured muscle cells and in striated muscle of transgenic mice. The proximal promoter region, together with the first intron and 1.8 kilobases of 3'-noncoding flanking sequence of the avian skeletal alpha-actin gene directed...

متن کامل

Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration

Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, rege...

متن کامل

Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy

Mutations in the survival motor neuron (SMN1) gene lead to the neuromuscular disease spinal muscular atrophy (SMA). Although SMA is primarily considered as a motor neuron disease, the importance of muscle defects in its pathogenesis has not been fully examined. We use both primary cell culture and two different SMA model mice to demonstrate that reduced levels of Smn lead to a profound disrupti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 102 6  شماره 

صفحات  -

تاریخ انتشار 2007